205 research outputs found

    RACE pulls for shared control

    Get PDF
    Maintaining and supporting an aircraft fleet, in a climate of reduced manpower and financial resources, dictates effective utilization of robotics and automation technologies. To help develop a winning robotics and automation program the Air Force Logistics Command created the Robotics and Automation Center of Excellence (RACE). RACE is a command wide focal point. Race is an organic source of expertise to assist the Air Logistic Center (ALC) product directorates in improving process productivity through the judicious insertion of robotics and automation technologies. RACE is a champion for pulling emerging technologies into the aircraft logistic centers. One of those technology pulls is shared control. Small batch sizes, feature uncertainty, and varying work load conspire to make classic industrial robotic solutions impractical. One can view ALC process problems in the context of space robotics without the time delay. The ALC's will benefit greatly from the implementation of a common architecture that supports a range of control actions from fully autonomous to teleoperated. Working with national laboratories and private industry, we hope to transition shared control technology to the depot floor. This paper provides an overview of the RACE internal initiatives and customer support, with particular emphasis on production processes that will benefit from shared control technology

    Telerobotics for depot modernization

    Get PDF
    Development and application of telerobotics technology for the enhancement of the quality of the Air Logistic Centers (ALC) repair and remanufacturing processes is described. Telerobotics provides the means for bridging the gap between manual operation and full automation. The Robotics and Automation Center for Excellence (RACE) initiated the Unified Telerobotics Architecture Project (UTAP) to support the development and application of telerobotics for depot operation

    Analyzing the Impacts of Natural Environments on Launch and Landing Availability for NASA's Exploration Systems Development Programs

    Get PDF
    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development (ESD) Programs, which includes the Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting/exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will discuss how climate analyses are performed by the MSFC Natural Environments Branch to support the ESD Launch Availability (LA) Technical Performance Measure (TPM), the SLS Launch Availability due to Natural Environments TPM, and several MPCV (Orion) launch and landing availability analyses - including the 2014 Orion Exploration Flight Test 1 (EFT-1) mission

    The Radial Structure of the Cygnus Loop Supernova Remnant --- Possible evidence of a cavity explosion ---

    Get PDF
    We observed the North-East (NE) Limb toward the center region of the Cygnus Loop with the ASCA Observatory. We found a radial variation of electron temperature (kTe) and ionization timescale (log(\tau)) whereas no variation could be found for the abundances of heavy elements. In this paper, we re-analyzed the same data set and new observations with the latest calibration files. Then we constructed the precise spatial variations of kTe, log(\tau), and abundances of O, Ne, Mg, Si, and Fe over the field of view (FOV). We found a spatial variation not only in kTe and in log(\tau) but also in most of heavy elements. As described in Miyata et al. (1994), values of kTe increase and those of log(\tau) decrease toward the inner region. We found that the abundance of heavy elements increases toward the inner region. The radial profiles of O, Ne, and Fe show clear jump structures at a radius of 0.9 Rs, where Rs is the shock radius. Outside of 0.9 Rs, abundances of all elements are constant. On the contrary, inside of 0.9 Rs, abundances of these elements are 20--30 % larger than those obtained outside of 0.9 Rs. The radial profile of kTe also shows the jump structure at 0.9 Rs. This means that the hot and metal rich plasma fills the volume inside of 0.9 Rs. We concluded that this jump structure was the possible evidence for the pre-existing cavity produced by the precursor. If the ejecta fills inside of 0.9 Rs, the total mass of the ejecta was roughly 4\Msun. We then estimated the main-sequence mass to be roughly 15\Msun, which supports the massive star in origin of the Cygnus Loop supernova remnant and the existence of a pre-existing cavity.Comment: 37 pages, 14 figures. Accepted for publication of Ap

    Access to Artemisinin-Based Anti-Malarial Treatment and its Related Factors in Rural Tanzania.

    Get PDF
    Artemisinin-based combination treatment (ACT) has been widely adopted as one of the main malaria control strategies. However, its promise to save thousands of lives in sub-Saharan Africa depends on how effective the use of ACT is within the routine health system. The INESS platform evaluated effective coverage of ACT in several African countries. Timely access within 24 hours to an authorized ACT outlet is one of the determinants of effective coverage and was assessed for artemether-lumefantrine (Alu), in two district health systems in rural Tanzania. From October 2009 to June 2011we conducted continuous rolling household surveys in the Kilombero-Ulanga and the Rufiji Health and Demographic Surveillance Sites (HDSS). Surveys were linked to the routine HDSS update rounds. Members of randomly pre-selected households that had experienced a fever episode in the previous two weeks were eligible for a structured interview. Data on individual treatment seeking, access to treatment, timing, source of treatment and household costs per episode were collected. Data are presented on timely access from a total of 2,112 interviews in relation to demographics, seasonality, and socio economic status. In Kilombero-Ulanga, 41.8% (CI: 36.6-45.1) and in Rufiji 36.8% (33.7-40.1) of fever cases had access to an authorized ACT provider within 24 hours of fever onset. In neither of the HDSS site was age, sex, socio-economic status or seasonality of malaria found to be significantly correlated with timely access. Timely access to authorized ACT providers is below 50% despite interventions intended to improve access such as social marketing and accreditation of private dispensing outlets. To improve prompt diagnosis and treatment, access remains a major bottle neck and new more innovative interventions are needed to raise effective coverage of malaria treatment in Tanzania

    BioDMET: a physiologically based pharmacokinetic simulation tool for assessing proposed solutions to complex biological problems

    Get PDF
    We developed a detailed, whole-body physiologically based pharmacokinetic (PBPK) modeling tool for calculating the distribution of pharmaceutical agents in the various tissues and organs of a human or animal as a function of time. Ordinary differential equations (ODEs) represent the circulation of body fluids through organs and tissues at the macroscopic level, and the biological transport mechanisms and biotransformations within cells and their organelles at the molecular scale. Each major organ in the body is modeled as composed of one or more tissues. Tissues are made up of cells and fluid spaces. The model accounts for the circulation of arterial and venous blood as well as lymph. Since its development was fueled by the need to accurately predict the pharmacokinetic properties of imaging agents, BioDMET is more complex than most PBPK models. The anatomical details of the model are important for the imaging simulation endpoints. Model complexity has also been crucial for quickly adapting the tool to different problems without the need to generate a new model for every problem. When simpler models are preferred, the non-critical compartments can be dynamically collapsed to reduce unnecessary complexity. BioDMET has been used for imaging feasibility calculations in oncology, neurology, cardiology, and diabetes. For this purpose, the time concentration data generated by the model is inputted into a physics-based image simulator to establish imageability criteria. These are then used to define agent and physiology property ranges required for successful imaging. BioDMET has lately been adapted to aid the development of antimicrobial therapeutics. Given a range of built-in features and its inherent flexibility to customization, the model can be used to study a variety of pharmacokinetic and pharmacodynamic problems such as the effects of inter-individual differences and disease-states on drug pharmacokinetics and pharmacodynamics, dosing optimization, and inter-species scaling. While developing a tool to aid imaging agent and drug development, we aimed at accelerating the acceptance and broad use of PBPK modeling by providing a free mechanistic PBPK software that is user friendly, easy to adapt to a wide range of problems even by non-programmers, provided with ready-to-use parameterized models and benchmarking data collected from the peer-reviewed literature

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Hypertonic Stress Induces VEGF Production in Human Colon Cancer Cell Line Caco-2: Inhibitory Role of Autocrine PGE2

    Get PDF
    Vascular Endothelial Growth Factor (VEGF) is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PG)E2 are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE2 generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE2 generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE2 production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE2 on VEGF production, Caco-2 cells were treated with cPLA2 (ATK) and COX-2 (NS-398) inhibitors, that completely block PGE2 generation. The Caco-2 cells were also treated with a non selective PGE2 receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE2 or selective EP2 receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE2 appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl2 was decreased by inhibition of concomitant PGE2 generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE2 plays an inhibitory role on VEGF production by Caco-2 cells exposed to hyperosmotic stress through EP2 activation
    corecore